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The von Neumann algebra characterization theorems

Richard V. Kadison

Dedicated to the memory of a friend and colleague, Dock Sang Rim

1. Introduction

When von Neumann introduced the class of operator algebras that have become
known as “von Neumann algebras™, he defined them in terms of a representation
on a Hilbert space [11]. One of the early puzzles of the subject, and one that
intrigued von Neumann [12], was the question of a representation-independent
characterization of such algebras. Is there a (sensible) set of conditions one can
impose on a Banach algebra that causes it to be isomorphic to a von Neumann
algebra?

The first efforts to solve this problem were plagued by a lack of suitably devel-
oped technique. Without the clear understanding of the representation-indepen-
dent nature of C*-algebras provided by the pioneering work of Gelfand-Neumark
[5] and Segal [17), the difficulties in solving the von Neumann algebra problem
are multiplied manyfold. It is not easy to recognize such difficulties from the
dizzying technical heights that the modern theory of operator algebras has at-
tained, but the development of mathematics replays the program of “unapproach-
able problem, acclaimed solution, forgotten difficulties” often enough (and with
fresh enough material) that most of us come to understand its nature.

With [5, 17] as background and with the sharpened techniques that had begun to
develop by the mid 1950%s, the von Neumann algebra characterization problem
assumed manageable proportions. Both of the standard characterizations [7, 16]
were established and appeared virtually simultaneously and (totally) indepen-
dently — which must be some measure of the “ripeness” of the problem for
solution. The characterization in [16] stems from Dixmier’s proof [3] that each
von Neumann algebra is the dual (conjugate) space to its (Banach) space of
ultraweakly continuous functionals. (Definitions and details will appear in later
sections.) It follows the lead of Takeda [21] and characterizes the von Neumann
algebras among C*-algebras as those that are dual spaces.

Certain (algebraic) order properties of special C*-algebras were known to single
out a subclass with properties remarkably like those of the von Neumann al-
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gebras {9, 15]. It was also known (by commutative example [4]) that not all such
C*-algebras are von Neumann algebras. M.H. Stone’s fundamental analysis of the
commutative case (in the form of algebras of continuous functions) [18, 19, 20]
was augmented by Dixmier in [4] where he describes those function algebras that
are isomorphic to von Neumann algebras. Following the basic principle of the
subject of operator algebras: the theory of C*-algebras is non-commutative con-
tinuous-function theory and the theory of von Neumann algebras is non-com-
mutative measurable-function theory, the result of [4] transcribed to the non-
commutative case becomes a conjecture whose affirmation characterizes von Neu-
mann algebras. The conjecture was not made explicit because it seemed at that
time to be more a “half-hope” that a probable result. That result is the character-
ization established in [7].

The virtue of a characterization result may lie in its providing a vantage point
from which to develop a subject. Such is the case with the Gelfand-Neumark
characterization of C*-algebras [5]. It is also the case with Sakai’s character-
ization of von Neumann algebras [16]. This latter is succinct and easily grasped in
an initial study of the subject. The virtue of a characterization result may lie in
the methods it introduces. Segal’s version [17] of [5] introduces the state-repre-
sentation technique basic to C*-algebra theory. In [7], the non-commutative
monotone-order techniques are introduced; they culminate in Pedersen’s beautiful
“up-down” theorem [13] and his equally splendid [14]. The characterization itself
may be a tool of special significance as is the case with Connes’s characterization
of matricial von Neumann algebras [2].

In the sections that follow, we produce a complete and readily accessible account
of the von Neumann algebra characterization results. The third section contains a
description of the commutative case including an example of a function algebra
with the “algebraic” properties of a (commutative) von Neumann algebra that is
not such an algebra. In the fourth section, the non-commutative characterization
results appear. The arguments of [7] are improved somewhat. The Sakai charac-
terization [16] is derived from [7], which helps to clarify the interrelation be-
tween [16] and [7] that has not been explicit before. The final section contains an
account of Tomiyama’s proof of the Sakai characterization using the “projection-
of-norm-one™ and “universal representation™ techniques [22, 23].

Our reference for the general theory of operator algebras is [8]. The author notes
with gratitude the partial support of the National Science Foundation (USA)
during the preparation of this article.

2. Preliminaries

The starting point for this account is the abstract (Banach algebra) description of
C*-algebras. In [5], it is shown that a (complex) Banach algebra U with a unit
and an adjoint operation (involution) 4— A* that satisfies:
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) (ad+ B*<=G 4% p»
(i) (4Bp—peqs 'O
(i} (A*)*=4

(v} |A*4| = A% A
and the further conditions

(v? A*A+1 is invertible
(v) 4% =) 4

1s Isomorphic to an algebra 2, of bounded operators acting on a complex Hilbert
space ). The isomorphism ¢ is an isometry (| Al =] ¢(A4)|, where [¢(A)| is the
bound of the operator ¢(4)). In addition, ¢(A*)=¢p(4)* for each 4 in A, where
¢(A4)* is the operator on # adjoint to ¢(A) — we say that ¢ is adjoint preserving.
With variations in its application, the terminology in use describes A as a “B*-
algebra” and A, as a “C*-algebra.” It results from this theorem (the “Gelfand-
Neumark™ theorem) that A, is a (norm) closed subalgebra of #(5#), the algebra
of all bounded operators on %, and that 4* is in A, when A is in A, (we say that
U, is a self-adjoint subalgebra of #() in this case).

Gelfand and Neumark conjectured that conditions (v) and (vi) are redundant; this
is indeed the case. A report of that subject, together with a proof of the full result,
can be found in [6] (where condition (vi) was removed).

Segal [17] proceeds from [5] to a definition of states of a C*-algebra and a
construction (the GNS construction) of representations of C*-algebras engendered
by states. With 4 in U, a complex number 4 is said to lie in the spectrum of A
{relative to ) when A —AI is not invertible in A (and sp 4, the spectrum of A4, is
the set of such 1). If A=A* (we say that A is self-adjoint in this case) and sp 4
consists of non-negative real numbers, we say that A is positive. (It can be proved,
though non trivially, that sp A consists of real numbers when A is self-adjoint.) A
linear functional ¢ defined on U that takes non-negative real values at positive
elements of A and takes the value 1 at I is said to be a state of A. The conjugate-
bilinear form (A4, B)—o(B* A) is a positive semi-definite inner product on A when
o is a state of A. The set {4: o(A* A)=0} of null vectors of this inner product is a
closed left ideal & in A and the conjugate-bilinear form

(A+ %, B+ L)—»0(B*A)(={A+ %, B+ Z>)

is a (well-defined) positive-definite inner product on the quotient vector space
A/ ¥. The completion 3, of U/ ¥ relative to { , >, is a Hilbert space. Each 4 in
91 gives rise to a bounded operator on U/¥ (bounded relative to the norm
derived from the inner product ( , > ) by means of the mapping, B+ ¥+ AB+ %.
There is a unique extension of this operator to a bounded operator x,(4) on A,

The mapping =, of A into A(#) is a homomorphism with the additional
roperties, m,(A*)=n,(A)* and |n(A4)|| <||All. We say that n, is a * representation
of U (the GNS representation corresponding to g). The proof of the Gelfand-
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Neumark theorem is cffected by showing that the set & of states of U separates
QL (if A is positive and o(4)=0 for each g in & then A =0) and then forming the
direct sum = of the representations T, That is m(A) y.-—-ZQEyQR‘,(A).y‘,, where y
=Y e DV, (in ¥ ., ® ). The fact that & is separating translates into the fa.ct
that 7 is an isomorphism — so that any other separating family could be used in

place of &

The description of a von Neumann algebra is given first in the context of a
representation on a Hilbert space . We employ a topology on Z() different
from the norm topology (when J is definite-dimensional). Any one of several
(distinct) topologies would do — and the fact that each of these topologics will
serve is a series of technical results important to the theory — but the simplest to
describe is probably the “point-open” topology on Z() (as a set of mappings
from J into ¢ with its metric topology). A subbase for the open sets consists of

sets in the form
{A€B(H): I(A—Ag}x|| <1, A€ B(H), xeH}.

This is the strong-operator topology on #(5) (and convergence of {4,} to Ain
this topology amounts to convergence of {A,x} to Ax in J¥ for each x in J) A
von Neumann algebra is a strong-operator-closed, self-adjoint subalgebra of #(¥)

containing I.

If {A,:a€A} is an increasing net of operators in a von Neumann algebra # (that
is, A,<A, when a<a’) and there is some constant ¢ such that 4 ,<c/ for each a
in A (we say that {A_} is bounded above in this case), then {4,} converges to some
operator A (necessarily in 2) in the strong-operator topology. The limit 4 of {4 }
is also its least upper bound in the sense that A4, < A4 for each a and if A,< A4, for
each a, then A< A4,. Of course, the corresponding results hold for decreasing nets
in 4.

The order property of von Neumann algebras just noted goes a long way toward
characterizing them. A C*-algebra A with this property is generated by its
projections — each self-adjoint operator in U has a spectral resolution in U ~
and it is tempting to guess that C*-algebras with this property are isomorphic to
von Neumann algebras. That guess is wrong as we shall see in the next section

[41.

If thef von Neumann algebra # acts on the Hilbert space 2%, each unit vector x in
X’ gives rise to a state w, of & defined by: w (4)={Ax,x) (AeR). Such states
have a special continuity property relative to the order structure on &: {w,(A,)
tends to w,(A) when {A4,} is an increasing net in & with léast upper bound A
More generally, if {x,} and {y,} are sequences of vectors in »# such that } |x,|?
<o and Y |y,1?< oo, then the mapping A—Y {Ax,,y,> defines a linear func-
tional ¢ on # with this same order continuity property ({g(4,)} tends to g(A)).
The family &, of functionals such as ¢ is a linear subspace of the (norm) dual
space #* of #. With some effort, one can show that #, is a norm-closed
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subspace of #*; thus &, is a Banach space [3]. The restriction to &, of the
image of # under its natural injection in #** yields a subspace of (#,)*. The
composition of that injection and restriction is a linear isomorphism ¥ of £ into
(#,)%. It results from the fact that

| Al =sup {{[<Ax, y>|: [xll =yl =1}

that ¢ is an isometry. A continuous linear functional on £, restricted to func-
tionals of the form 4-—{Ax, y) gives rise to a bounded conjugate-bilinear func-
tional on ), which corresponds to an operator (in #) by virtue of the Riesz
representation of such bilinear functionals. This leads to the conclusion that y
maps Z onto (R ,)*.

From the preceding discussion, several properties of von Neumann algebras are
apparent. Not only do they have the order properties discussed, but they have
separating families of states that respect these order properties. In addition, each
von Neumann algebra is the dual space of some Banach space. Each of these
observations leads to a representation-free characterization of von Neumann
algebras.

With ¢ a state of the C*-algebra U, we write x, for the vector I+ 2 in J#, and
note that @, °T,=Q. In addition, n (W)= A/, which is dense in K.

Definition 2.1. A C*-algebra # that satisfies the following two conditions is said
to be a W*-algebra:

(1) if {4,} is an increasing net of self-adjoint operators in & and {4,} has an
upper bound, then {4,} has a least upper bound A4 in #,

(i) the set A" of states w of # with the property that {w(A4,)} converges to w(A)
when {4 } is an increasing net in & with least upper bound A separates .

A state in A4 is said to be a normal state of &.

The first characterization of von Neumann algebras [7] (Section 4) tells us that
they are precisely the W*-algebras. The second characterization [16] tells us that
the von Neumann algebras are precisely those C*-algebras that are dual spaces.
In the next section, we construct a commutative C*-algebra satisfying (i) of
Definition 2.1 but not isomorphic to a von Neumann algebra.

3. The commutative case

A boundedly complete lattice is a lattice in which each non-empty family of
elements that has an upper bound has a least upper bound. By studying the set of
lower bounds, it follows that in a boundedly complete lattice, each non-empty
family that has a lower bound has a greatest lower bound. We begin with a
classical theorem of Stone’s [20] concerning the algebra C(X) of all complex-
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valued continuous functions on a compact Hausdorff space X (provided with the
pointwise algebraic operations). When we refer to order properties of C(X), the
pointwise ordering is used and it is understood that the real subalgebra of real-
valued functions in C(X) is being considered.

Theorem 3.1. If C(X) is a boundedly complete lattice, then each open set in X has
an open closure.

Proof. Let @ be an open subset of X, @~ its closure, # the family of functions f
in C(X) such that 0< f <1 and f(p')=0 if p'¢ @, and f, the least upper bound of
F in C(X). Since 1 is an upper bound for &, fy<1. If pe® there is an fin 7
such that f(p)=1, so that f,(p)=1 for each p in @ (hence, for each p in 07). If
p'¢0~, there is a g in C(X) such that 0<g<1, g(p')=0, and g(p)=1for pin .
Thus g is an upper bound for &, and f, <g. It follows that f, is 1 on O~ and 0 on
X\0~. As f, is continuous, @~ is open.

When a space X has the property that each open set has an open closure, we say
that it is extremely disconnected. A subset that is both closed and open 1
described as clopen. The theorem that follows establishes the converse to Theorem
3.1 [10, 20].

Theorem 3.2. If X is an extremely disconnected compact Hausdorf] space, then
C(X) is a boundedly complete lattice.

Proof. Let {f,: acA} be a family of real-valued functions in C(X) bounded above
by some constant. Our program (carried out in five steps) is to construct the
“spectral resolution” of the function that should be the least upper bound of {f;}

(1) Suppose, first, that each {f.} is the characteristic function of some clopC_n
subset X, of X. We show that [{),.. X,]~ is a clopen set whose characteristic
function V,, f, is the least upper bound (in C(X)) of {,} and that the interior of
(Naca X, is @ clopen set whose characteristic function A,_, f, is the greatest lf)wcr
bound of {f,} in C(X). Since { J,.a X, is open, its closure Y, is clopen. If g 1s a0
upper bound for {f,}, then 1 <g(p) for each p in | J,.o X,. By continuity of g, the
same is true for each p in Y. Thus \/,_, f, is the least upper bound of {f}. No¥
1—/, is the characteristic function of X\ X,. Hence the least upper bound -/,

of {l —f,} is the characteristic function of [{ J,.a(X\X,)]~. Thus f,, the character-
istic function

X\[g(X\Xa)]‘ (=X\[X\QX..]'),
which is the interior of (.o X, is the greatest lower bound of {f,}.
(11)) We show next that

X\[aUA {xeX:f,(x)>A}]"  (=X)

is a clopen subset of X and that if Y is a clopen subset of X with the property
that f,(p)<Afor allain A and all p in Y, then YS X,. Since X is the complement
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in X of the closure of a union of open subsets of X, X, is clopen. If peX,, then

for each @ in A, p¢{xeX:f,(x)>2}; that is, J.(pP)<2. By assumption on Y, Y
<X\ f, (%4 0)) so that £~ (4, o)) X \Y. As Yis open, X/Y is closed. Thus

(U £ (4 o))"= X\ Y,
ach

and Y X,.

(i) Let e, be the characteristic function of X a- Let k be a constant that bounds
(/) above and such that —k < f,. for some a’ in A. We prove that

() e;=0for A< —kand e;=1 for 1>k;
(2) elge)" lf).sj.';
() e= A e;.

A
If A< -k and peX,, then p¢{xeX:f.(x)>1}. But —k<f,, so {xeX:f, .(x)>2}
=X. Thus X;=@ and ¢, =0.

if2>k and pe X, then f,(p)< A for all a in A. Thus X is a clopen set on which all
/. take values not exceeding A. From (ii), X<cX;;50X=X,and ¢;=1.

lf A<, then
xeX: f,(x)> 2} {xeX:f,(x)> A}
and X, X,.. Hence ¢, <e,..

Since e,<e;. when A<, e;< A, .,e;. Thus X,SY,, where Y, is the set whose
characteristic function is A, ,e,. Now Y,c X, for each 1’ greater than A. Thus
if peY,, f,(p)<X’ for each such 1’ and each a in A. Hence f,(p‘) <A for all a in A,
and ¥, is a clopen set on which all f, take values not exceeding A. From (ii), Y,
SX; Hence V,=X,,and e,= A, €,

(iv) We show now that j"_ . Ade,; converges in norm (in the sense of approximating
Riemann sums) to a function fin C(X) and that X, is the largest clopen set on
which f takes values not exceeding A. If {A,,...,4,} (=) and {yu,, s g} (=2)
are partitions of [ —k, k], |2| and |2| are the lengths of the largest subintervals,
and {y,, ...,7,} is their common refinement, then

| n ,
Y Eley,~es, )— ¥ vile, —e,,_ )| S|P
=1 kw1
and
m r g
: Z p}(e“;_eﬂJ—l)— 2 yk(e}'k—e}'k-l) Sl '
j=1 k=1
$0 that

5 isfes ey, )= 3 ﬂ;(e“-e,.k-,)lsmﬂ-@l-
j kw1
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Thus the family of approximating Riemann sums to {*,Ade, indexed by their
corresponding partition of [ —k, k] and the set of these partitions partially ordered
(and directed) by refinement, forms a Cauchy net in the norm topology on C{X).
Since C(X) is complete in its norm topology, this net converges in norm to a real-
valued function f in C(X). As each approximating Riemann sum has range in
[ -k, k], the same is true of f and f=[*,Ade;, when k<a.

Suppose now that k<a and Ae{—a, al. If {4q,-...,4,} is a partition of [—a,a],
with A as some 4,, such that (g=) Y., Aj(e;,—e,,_,) is close (in norm) to {; then
| fe,—ge,ll is small and

k k
ge,= 2 Ale;,—e,, )< ) ik(ez,'_e.z,-1)='{(91_e-¢)=ler
J=1 j=1
Thus fe, < Ae,. At the same time, || f(3 —e;)—g(1 —e;)| is small and

gll—e)= ) Ale;,—e,, )

j=k+1

> Y Aley,—e;,.)=Ale,—e)=A(l —ey).

J=k+1
Thus f(1 —e)= A(1 —e,).

Let Y, be X\f (4, c0))". Then Y, is a clopen subset of X on which f takes
values not exceeding 1. If Yis another clopen subset of X on which f takes values
not exceeding 4, then Y& X\f " 1((4, o)) so that £f~1((4, o)) X\Y. As Yis open
X\Yis closed; and f~'({4, 0))” = X\ Y. Thus YCY;; and Y, is the largest clopen
set in X on which f takes values not exceeding A.

Since fe,<Ae,, f takes values not exceeding 4 on X, and X,cY, As &=
A, 1€x, X, is the largest clopen set in X contained in (), , X, Now r<fp
if peX\X,., since A(1 —e;)< f(1 —e,), so that X\ X, < f " ((4, o))~ when 4'>4
Thus ¥, X, when 2'>4; and Y, is a clopen set contained in (), ; X, Since X
is the larg.est such clopen set, Y, X,. Hence Y;=X, and X, is th>e largest clopen
set on which f takes values not exceeding 1.

(v) We are now in a position to show that f is the least upper bound of {/;} and
conclude tha? C(X) is a boundedly complete lattice. If f(p) < f,(p) for some p in X
and some a in A, there is a A and a clopen set Y containing p such that f (<4
and 1< f,(q) for each q in Y. From (iv), peYS X,. But pe{xeX:f,(x)>4:

*'{’ifl a contradiction. Thus f,< f for cach a in A, and f is an upper bound for

!f g 18 an upper bound for {f,} and g(p)< f(p) for some p in X, then, again, there
g,_ a A and a clopen set Y containing p such that g(q)<A<f{(q) for each ¢ in ¥
emcedﬁsg for all a in A, Y is a clopen set on which all f, take values ot
xceeding A. From (i), peY< X,. From (iv), f(p)<4, a contradiction. Thus f<E
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and f is the least upper bound of {f.} in C(X). It follows that C(X) is a
boundedly complete lattice.

The lemma that follows lists conditions on a compact Hausdorff space that are
equivalent to its being extremely disconnected.

Lemma 3.3. Let X be a compact Hausdorff space.

(1) X is extremely disconnected if and only if each pair of disjoint open sets have
disjoint closures.

(i) X is extremely disconnected if and only if it satisfies the following two con-
ditions :

(@} X is is totally disconnected,

(b) the family € of clopen subsets of X partially ordered by inclusion is a complete
lattice.

Proof. (i) Suppose @, and 0, are disjoint open subsets of X and X is extremely
disconnected. Since @, is open, X\ @, is closed and contains ¢;. Thus X\Or
contains @,. Since X is extremely disconnected, ¢ is open so that X\O[ is
closed. Hence X\ 0y contains @; — that is, O] nO5 =0.

Suppose now that disjoint open subsets of X have disjoint closures and let ¢ be
an open subset of X. Then @ and X\O@~ are disjoint open subsets of X. By
assumption, @~ is disjoint from the closure F of X\@~. But FU0~ =X (since X
=(X\0~-)}u0-). Hence O~ is the complement in X of F, and @~ is open. Thus X
is extremely disconnected.

(i) Assume that X is totally disconnected and % is a complete lattice. Since X is
a compact Hausdorff space in which points can be separated by clopen subsets of
X, a standard compactness argument (replacing “open” by “clopen™) shows that a
point can be separated from a closed (=compact) subset of X by clopen sets. In
particular, each open set in X is a union of clopen sets. Let @, and @, be disjoint
open subsets of X and let €; be {X,e%: X,=0O}} for jin {1, 2}. By assumption, ¢,
has a least upper bound X, in €. If X,€%,, then X\ X, is a clopen set, contains
0,, and, hence, contains each element of ¥,. Thus X, X\ X, and X, S X\X,.
Since 0,=J€,, 0,< X\ X,. But X\ X, is clopen so that 0; € X\ X,. As 0, =X,
and X, is clopen, O7 < X,. Thus O] n0; =0. From (i), X is extremely discon-
nected.

Assume, now, that X is extremely disconnected. From Theorem 3.2, € is a
complete lattice; and, of course X is totally disconnected.

In the results that follow, we give the details of the construction of a commutative
C*-algebra not isomorphic to a von Neumann algebra but isomorphic to C(X)
with X an extremely disconnected compact Hausdorff space. The formulation,
organization, and arguments are our own; the basic ideas are not. An early
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version of this example can be found in [4]; but as far as this author can
determine, the fundamental ingenuity of this class of examples is due to Birkhoff-
Ulam as described in the pages leading to Corollary 1 in {1; p. 186].

In a topological space X, a subset is said to be meager when it is a subset of a
countable union of subsets of X each of which is nowhere dense in X. An open
subset of X is said to be regular when it coincides with the interior of its closure.

(The interval (0, 1) is a regular open set in R, but (—1,0)u(0, 1) is not.)

Lemma 3.4, Let X be a complete metric space.

(i) The interior of the closure of an open set and the interior of the complement of a
regular open set in X are regular.

(i) Each open subset of X differs from a regular open subset on a meager set.

(iii) Each Borel subset of X differs from a regular open subset on a meager ( Borel)
set.

(iv) There is a unique regular open subset of X that differs from a given Borel set on
a meager ( Borel) set.

(v) Let %, be the family of regular open subsets of X partially ordered by inclusion.
Then %, is a complete lattice.

(vi) Let F be the family of Borel subsets of X and M the a-ideal of meager Borel
subsets of X (a countable union of sets in M is in # and the intersection of a set of #
with any set of F is in .M ). Let F | M# be the family of equivalence classes of sets in
F under the relation: S~S' when S and S’ differ by a meager set. With & and b4
in F/ M, define: <5 when SCS' for some S in & and S’ in &' Then X isa
partial ordering of F /M (the “quotient” of “inclusion” on & by the ideal M ), each
& in F [ M contains precisely one regular open set, and the mapping that assigns {0
each & in F[M the regular open set it contains is an order isomorphism of F/4
onto %,. The partially ordered set ¥ /M is a complete lattice.

(vii) The algebra #(X) of bounded Borel functions on X is a commutative C*
algebra and the family M of functions in B(X) that vanish on the complement of a

mIeaier Borel set is a closed ideal in #(X) and B(X)/.H#, is a commutative C*
algebra.

(viii) Let. Y be the compact Hausdorff space such that #B(X)/.#,= C(Y). Then Yis
totally disconnected and the family of clopen subsets of Y, partially ordered by

inclusion, is a complete lattice, Y is ] g
, , extremely disconnected, and C(Y) (a7
B(X)/ M) are boundedly complete lattices. ’

Proof. (i) Let Y be a closed subset of X and O be its interior. Since @ is an 0"
?tzosi:t of X contained in @~, O is contained in the interior @, of 0. Sinc® Co
h gr and 0, is an open subset of X, 0, is contained in the interior & of ¥

us =0, 0 is the interior of 0=, and O is regular. Both assertions of (1 follow:
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(ii) Let @ be an open subset of X and @, be the interior of . Then
(O, \O)V(O\O ) =0, \0<= O~ \0.

But 0=\0 is a (closed) nowhere-dense set. Hence O and 0, differ on a meager
subset of X (that is, O~ @,). From (i), 0, is regular.

(iii) Let ' be the family of Borel subsets of X that differ from a regular open set
by a meager (Borel) set. If Se#* and O, is a regular open set such that S~0,,
then (S\OII(Op\S) (=LUX\SNX\O)IUHX\OI\(X\S)]) is meager. Thus
X\S~X\0,. From (i), the interior 0, of X\0, is regular, and O, ~ X\ 0, ~ X\S.
Thus X\SeZ".

Suppose §y,S,,... are in F'. Let O; be a regular open set such that S;~0,. Then
SAO)VONS)) (=M)) is meager and

(NGB ND =0

As \ )1 M, is meager, we have {J2,S;~|J2,0;. From (i), the interior 0, of

(Ur1€)" is regular and O~(J,0)~ ~J%.,S;. Thus |J=,S,e#’ and & is

j=1
a g-algebra containing the open sets and contained in & It follows that ' =%

) If Se#,S~0,, S~0,, and 0, and @, are regular open sets, then O, ~0,.
Since 0 is closed, if some p in @, is not in @3, then some open set @ containing
p does not meet 03, and ON@, < 0,\0O,. But ©,\0, is meager, and meager sets
in a complete metric space have null interior. Thus @, <3 and @, is contained
in the interior 0, of @5 . Symmetrically, 0, <@, and 0, =0,.

(v) Suppose 0, %, for a in A. Let @, be the interior of ({ .o 0,)”- Then 0,e%,,
from (i), since | J,.o @, is open. Clearly O, is an upper bound for {0,:acA}. If O
is another upper bound, then (| J,ca @,)" SO~ and the interior @ of O~ contains
the interior @, of (| J,., @)~ Thus @, is the least upper bound of {0,: aeA} and

7, is a complete lattice. (Note that the set of all lower bounds of {¢,} has a least
upper bound @, and @, is the greatest lower bound of {O,}.)

(V) As defined, the relation < is clearly reflexive and transitive. Suppose 255"
ad <P, with & and &' in F/.#. Then there are S, and S, in & and §} and
$;in & such that S, and S,SS,. Let M be (S\S;)U(S;\S,) and M’ be
(5\S)u(S;\S)). Since S, ~S, and S;~S3; M,M’, and MUM’ are meager, and
$,uM=5§,UM, §\UM’=S,UM’. Thus

S,1UM'UM=S'2UM’UM§SZUM’UM=SIUM'UM‘C_S;UM’uM’
Sothat §,~S7 and ¥=9". Hence < is a partial ordering of # /A .

From (iii) and (iv), each & in & differs from a unique regular open sct O by a
meager set. Thus ;he equivalence class & of S contair_ls @ and no other regula.r
open set. If %' is another equivalence class and O’ 1s the regular open set it
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contains, then <9 if 0< @, by definition of <. Conversely, if <&, then
OuMc @' UM, where M and M’ are in .#. Thus O=@ UM so that O\O~
SO\O'< M'. Since O\@ ~ is open and M’ is meager, O\@ ~ =9, that is 00",
Hence O is contained in the interior @ of @' ~. It follows that the mapping & -0
of /4 onto %, is an order isomorphism and, from (v), #/# is a complete
lattice.

(vin) If #(X) is provided with the supremum norm it becomes a Banach algebra,
The operation of complex conjugation of functions is an adjoint operation on
#(X). Since | S =112l =MNfUZ=111% B(X) with the given norm and adjoint
operation is a C*-algebra. If f, and f, in .#, vanish outside of the meager sets
M, and M,, respectively, then f, +f, vanishes outside M, UM,, a meager subset
of X, and ff, vanishes outside M, for each f in #B(X). Thus 4, is an ideal in
#(X). If fe#l, and | f—f,—0, then f vanishes outside | /=, M,, a meager
set, where M, is a meager set on the complement of which f, vanishes. Thus
fefly and A, is a closed (two-sided) ideal in £(X). With its (supremum)
norm and complex-conjugation as involution, #(X) satisfies the conditions of the
Gelfand-Neumark theorem [5]. Thus #(X) and hence #(X)/.#, are commutative
C*-algebras.

(viil) Let & be in & /.# and e be the characteristic function of a set in &. Define
n{¥) to be the projection in #(X)/.#, that is the image of e under the quotient
mapping. If ¢ corresponds to another set in % then e~e’e.#, so that e and ¢
have the same image in #(X)/M, and 7(¥) is well defined. If ¥ X', there are
sets § in & and §' in & such that S=§'. With ¢ and ¢ the characteristic
functions of S and §', respectively ¢ <<’ so that (&) <n(¥).

Let E be a projection in B(X)/.#, and f be an element of #(X) mapping onto E.
Then f2—f maps onto 0 and f?—f vanishes outside some meager Borel set M.
Let e(p) be f(p) for pin X\ M and 0 for p in M. Then e is an idempotent in B(X)
so that e is the characteristic function of a set S in & If & in F/4 is the
equivalence class of S, then n(&)=E. Hence n is an order-preserving mapping of
F [ A onto the set 2 of projections in B(X)/.#,-

If Eand E' are in 2 and E<E/, there are & and &’ in F /4 such that §(¥)=E
and n(&)=FE'. By definition of », there are sets S and §’' in % and & whose
characteristic functions e and ¢ map onto E and E’, respectively. Thus 2(e—e¢)
maps onto (E' —E)> —(E'—E) (=0) and e—e¢’ is 0 on X\ M’ for some meager sct
M. It follows that S\S'c M’ so that S€S'UM’. Since SUM'e¥’, <& Hence
n is one-to-one, for if n(F)=n(¥")=E, then ¥<¥ and ¥ <& so that =
from (vi). It follows, too, that ! is order preserving.

[l ¢ is the isomorphism of #(X)/.#, onto C(Y), then ¢on is an order isomor-
phism of F/.# with the set of idempotents & in C(Y). From (vi), #' is a
somplete lattice. Each function in £(X) is approximable in norm as closely as we
wish by step functions. Thus linear combinations of idempotents lie dense in
B(X), B(X)/ M, and in C(Y). Hence Y is totally disconnected. From Lemma 3.3
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(i) Y is extremely disconnected. Thus C(Y) and £(X)/.#, are boundedly com-
plete lattices, by Theorem 3.2.

Theorem 3.5. With the notation of Lemma 3.4, assume that X is [0,1] and let ¢ be a
state of C(Y).

(i) Suppose e(V, 2, €)=, 0(e,) whenever {e,} is a countable family of idem-
potents in C(Y) such that e, e, =0 unless n=n'. (We shall say that ¢ is a normal
state in this case.) Then o(\V,2,f)<Y > ,0(f,) for each countable set {f,} of
idempotents f, in C(Y) (where ‘a< + 00’ is envisaged in the inequality of this
assertion ).

() Enumerate the open intervals in [0,1] (=X) with rational endpoints and let
f1sf2, ... be the idempotents in C(Y) that are the images of their characteristic
functions (in B(X)) under the composition of the quotient mapping of #(X) onto
R X)/ M, and the isomorphism of B(X)/ M, with C(Y). For each j in {1,2,...}, let ¢;

be an idempotent in C(Y) such that 0<e;<f;. Then \/;2,e;=1.

() With the notation of (ii) and given a positive ¢, e, can be chosen such that
ele)<277¢ and C(Y) has no normal states.

(iv) The C*-algebra C(Y) is isomorphic to no abelian von Neumann algebra al-
though Y is extremely disconnected.

Proof (i) Let f be f, and f be fyv...vf,—fiv..Vvf,_; for nin {2,3,..}. If
m<n, then f!<f,v...vf,_, so that f.-f;=0. Moreover, fi+...+f,=fiv..vV],
for each nin {1,2,...} so that V.2, f,=V.2,f, and

o3 4)e(3 )= 5,000

n= 1

Now fiv...vf, <f, +...+f, so that

Y olf)=elfiv..v[)< il Q(f")s,,; o(f,)-

l-l

Hence

oV £)= 3 etf< T et

- A=l n=1

(i) With the notation (and results) of the proof of Lemma 3.4 (viii), let ; be

(¢on)~*(e). From Lemma 3.4 (iii), & contains a regular open set 0, Lc(: 0 be
1<10,. If pe[0,1]\@", then some open interval'(a,b) with ranonalbep ;?;mt;

contains p and does not meet @. Let & be the equwalem;)e) c]ass of I(a, ) u:i f /.

ad f; be (pon)(¥). Since 0<e,<f;, ¥ Now (a,b) is regular and from

LemmJa 3.4 (iv), (a, b) is the only régular sét in & From _Lemma 34 S,“)’ 0,=(a,b)

contradicting the choice of (a, b) (not meeting O). Thus 0~ =[0,1], V;Z,6;=[0.1],

and ijiej=l‘
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(ii1) We note, first, that no non-zero idempotent f in C(Y) is minimal. If f were
minimal, (¢ o)~ (f) (=) would be minimal in %#/.# and the regular open set
¢ in & would be non-empty and minimal in %,. But @ contains some open
interval (a,b) as a proper subset and as noted in (11), (a, b) is regular. Thus we can
choose an idempotent f' in C(Y) such that 0<f’'<f One of ¢(f') and o(f-f") is
not greater than }o(f). Continuing this “division™ process, we find an idempotent

S in C(Y) such that 0<f” <f and o(f"”)<e. Applying this to f,, we find ¢; as
described.

(iv) From (i), and with with the notation of (iii),

1=o=¢(V )< T ote)< T 277e=s,
=1 j=1 =1

a contradiction. Thus C(Y) has no normal states. Since vector states of an abelian
von Neumann algebra are normal, C(Y) is isomorphic to no such algebra.

4. Characterizations of von Neumann algebras

We begin with a proof of the characterization found in [7]. Our first goal,
rcached in Lemma 4.3, is to show that a “monotone closed” C*-algebra acting on
a Hilbert space is a von Neumann algebra. With that lemma established, it is not

difficult to use representation techniques to complete the characterization proof
(Theorem 4.11).

The monotone closure methods of the next lemmas were later sharpened bril-
liantly by G.K. Pedersen to yield his stronger version [13] of Lemma 4.3: to pass
from a represented C*-algebra to its strong-operator closure it suffices to adjoin
the limits of increasing nets then of decreasing nets and then of increasing nets. In
the separable case a “sweep up and then down” (and with sequences) suffices. In a
later article [14], Pedersen proves (by allied techniques) the much sought after
result that each represented C*-algebra whose maximal abelian subalgebras are
strong-operator closed is itself strong-operator closed. In effect, Lemma 4.3 says
that to check whether or not a represented C*-algebra is strong-operator closed it
suffices to check limits of monotone nets; Pedersen’s result [14]says that it suffices

to do this with monotone nets of commuting elements, while [13] supplies a
finite-stage procedure for passing to the closure.

Lemma 4.1. Let A be a C*-algebra acting on a Hilbert space . Suppose that each
increasing net of operators in U that is bounded above has its strong-operator limit
in .

Then:

(1) each decreasing net of operators in U that is bounded below has its strong-
operator limit in ;



The von Neumann algebra characterization theorems 207

(ii) the range projection of each operator in U lies in A;
(iii) the union and intersection of each finite set of projections in U lie in U;
(iv) the union and intersection of an arbitrary set of projections in U lie in A,

(v Ee¥, where E is a cyclic projection in U~ with generating vector x, provided
that for each vector y in (I —E) () there is a self-adjoint A, in W such that A x
=xand A,y=0;

(i) A~ =W if each cyclic projection in A~ lies in A.

Proof. (i) if {4,} is a decreasing net in U that is bounded below with stroug-
operator limit A4, then { —A4_,} is an increasing net in A with strong-operator limit
-A. By assumption, — A€W, so that 4.

(i) From [8; Proposition 2.5.13], R(4*)=R(A4*A), so that it suffices to show that
R(H)e¥ for each positive H in UA. Of course R(H)= R(aH) for each positive scalar
a. Thus we may assume that 0< H <I. In this case {H!/"} is a monotone increas-
ing sequence in A and from [8; Lemma 5.1.5], R(H) is its strong-operator limit.
By assumption then, R(H)e 2.

(ni) From [8; Proposition 2.5.14}, Ev F=R(E+ F)e, when E and F are pro-
jections in . Thus the union of a finite family of projections in U is in 2. Since /
-V(I-E)=A_,E,, the intersection of a finite family of projections in 2 is in 2.

(iv) If {E,;aeA} is a collection of projections in 2, the union of each finite
subcollection lies in 2 from (iii). The family of such unions, indexed by the family
of finite subsets of A directed by inclusion is an increasing net with strong-
operator limit \/,_, E,. By assumption then, V/,_, E .

(v) From our assumption that 4 ,x=x, R(4,)x=x. Since 4,y=0 and A =4},
R(4,)y=0. Thus Gx=x and Gy=0 for each y in (I-E)(>¢), where G=
Ayeu-pon R(A4,). From (i1) and (iv), GeA. As E is cyclic under A’ with generating
vector x, E<G. As Gy=0 for each y in (] —E)(s#), GLE. Thus E=GeU.

(vi) From [8; Proposition 5.5.9] and (iv), each projection in A~ lies in 2. From
(8; Theorem 5.2.2 (v)], each self-adjoint operator in A~ lies in A. Since A~ is a
self-adjoint algebra containing 2, A~ =AU.

Lemma 4.2. Let WA and > be as in Lemma 4.1. Suppose E is a cyclic projection
in N~ and x is a unit generating vector for E(3¢) under W. With y a unit vector in
(I-E)( ), we have:

(i) there is a sequence {A,} in (W,), such that A,x—x, A, y—0,
(A=A, )" x| <2'=" and |(A4,—A,_ )" y|<2'"",
where A,=0;

() {T} is a bounded monotone decreasing sequence of positive elements of U, where
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n -1 n ;
T=(1+ 3 4-di)?) , and T Y (-4, ) ) T
k=1 =1

for each n, where T is the strong-operator limit of ‘T} (in N);
(iii) for each j in {l,...,n}, (TV3(Y5_ (A, —A_)*)TV?} is monotone increasing
with n, bounded above by I, and if C, is its strong-operator limit, then 0<C <!,
{C,} is decreasing,

T2 ( Z (Ak—Ak_,)+) T2+ C,.,=C,

ko= 1
and

Tl/z An TUZ + Cn+ 1= Tl/z ( Z —(Ak _Ak— 1)_) T”2+ Cl*

k=1

(iv) {TY*A,TV?+C,,,} is monotone decreasing and bounded and T"? AT'*¢Y,
where A is a weak-operator limit point of {A,};

(v) R(T)eN, R(T)x=x, R(T)y=y;
(vi) each maximal abelian (self-adjoint) subalgebra of U is weak-operator closed.

Proof. (i) From the Kaplansky density theorem, there is a sequence {4,} in (),
such that 4, x—x and A4,y—0 since E€(N,’),, Ex=x, and Ey=0. Passing to 2
subsequence of {4,} (using the Cauchy criterion on the convergent subsequences,
{A,x} and {A,y}), we can arrange that

NA,— A )X <27 (4, —A,_ )yl <2t

For each self-adjoint 4, A* and A~ have orthogonal ranges so that
lAz|2=14" 2|2+ A~ z||2.

Thus |[A" z|| <[/ 4z||. It follows that for each n in N,

(A=A, )" x| <2177 (4, -4, )yl <2t "

(it) Since
n+1

ISHaZ; (A=A )" <I+ Y (A4,-4,_)",
- k=1

we havg from [8; Proposition 4.2.8 (iii)] that 0<T,,,<T,<I. Withua given u_ﬂiI
Vector”;n..)i” and m large enough T2y is close to T'?u since the mapping
A—~A"" is strong-operator continuous on the unit ball of @(#)* from &

Proposition 5.3.2]. (In fact, this mapping is : on
’ strong-operator continuous
A(A)*.) Now when n<m, Pping &-op

WL A=A ) T, u>s<:r,:“ (£ “a-a0°) )

=<T,,. ; (Aa—Aa_1)+) u,u>5<1u,u>4

TN



The von Neumann algebra characterization theorems 209

and as m— co,

<T,:/2 (‘Z (A, —A,_ 1)+) T,%u, “>“‘*<T“2 (i (A, —A, _ 1)+) T2 u,u>.
=1 -1

Thus T35 (A, = A,_)*) T2 <1 for each n in N.
(iti) From (ii), for each j in {1, ey n}

T2 Z (Ak"Ak~l)+) TIIZSTllz ( Z (Ak_Ak—1)+) T”zﬁl.
=j

-]

Thus {TY*(}3_ (Ay=A,_)")TY?} is an increasing sequence (over n) of oper-
ators in A bounded above by I. Its limit C;lies in A and 0 < C;<1I. Since

L M= A_ )< T (A4, )
k=j+1 k=j
for each j and all n, {C ,} 1s decreasing. In addition, for each n and m,

T112 Z (Ak—Ak— 1)+) T1/2+T1f2( Z (Ak—Ak—1)+) Tlfz
=1

J=n+ 1
=Tl/2 Z (A&—'Ak_])-'-) T”Z.
=1

ThUS Tl}z(zz=l(Ak_Ak—I)+)T”2+Cn+l=Cl' NOW An—An—1=(An—An-l)+
~(4,~4,_,)" and A,=0, hence

TV 4, T2 4 C,, ,=TV? (.Z (A, —A, _ 1)) TV?+C,,,
=1

=T'2( Y —(4,—A4,_ ,)-) TV 4 C,.
-]

) It follows from (jii) that {7/ A, TY?+C,,,} is monotone decreasing. Since
IT A, T2+ Co oy | I T HAL + 1 Cos 1l <2,

(‘24,124 C +1} is bounded below by —2I and has a strong-operator limit
Bin 9 At the same time TY2 ATY2 4+ C is a weak-operator limit point of
\T' 4, T¥24 ¢ .} where C (in ) is the strong-operator limit of {C}. Thus
T’ ATY24 C=B and TY2 AT (= B— C)e L.

() Since Te¥, R(T)eA from Lemma 4.1 (ii). Now (TE+Y2 (A= A_y) 2w
(=<2+Z£°= (A —A4,_))" z, Tu)) is approximated closely by:

<(z-{-k‘i'_"l (A —A4,_)" z), [I+ i (A, —A,_ ,)*] B u>=(z,u>

k=1

for large n, where u is any preassigned vector in J# and z is eith'er X or y. (From
(i) Zﬁl(A,,—A,, ,)* z converges to some vector in ) when z is either x or y.)

|
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Thus
T(z+ Y (A -4, z)-:z, and x,yeR(T)(¥).
km 1

(vi) Suppose & is a maximal abelian self-adjoint subalgebra of . If {4,} is a
bounded increasing net in o, its strong-operator limit lies in U and commutes
with . Hence that limit lies in .o/, It follows that o satisfies the same condition
as A, so that what we have proved thus far about A applies to &. In other

words, for this part of the proof, we may assume that U is abelian. With that
assumption, T2 AT'2=ATe. Since x is in the range of T and Ax=x, x is in

the range of AT In addition AT (=TA) is self-adjoint and TAy=0 since 4y=0.

Thus R(TA)e, R(TA)x=x, and R(TA)y=0. From Lemma 4.1 (v) (vi), A=U"
(that is, o/ =&/ ) in this case.

Lemma 4.3. With the notation and assumptions of Lemma 4.2:

(i) MAN lies in A, where M and N are spectral projections for T corresponding to
bounded intervals with positive left endpoints;

(i) M, AF and FAM,, are in A, where F=R(T) and {M,,} is a sequence of spectral

projections for T corresponding to bounded intervals with positive left endpoints
such that Y M, =F;

(i) FAFAFe?,
(ivy FAFAFx=x and FAFAFy=0;
(v) A=A

Proof. (i) Let S be a bounded interval with a positive left endpoint and let g(r) be

t~' for ¢t in S and O for ¢t in R\S. From Lemma 4.2 (vi), a maximal abelian
subalgebra o of A containing T is weak-operator closed in %(5#) and, therefore,
contains g(T). From [8; Theorem 5.2.8], g(T)T=M, where M is the spectral

projection for T corresponding to S. Since TATe from Lemma 4.2 (iv), MAT
(=g{(T) TAT)eN. Similarly, MANe, where N is another spectral projection for
T corresponding to a bounded interval with positive left endpoint.

(i1) Since

M AM +M )M AM, +M)=M _ AM AM +M, AM +M AM_+M,
and Y2 | M, (=F)e¥, we have that

M, AFAM_ +M_AF+FAM_+ FeU

and also M, AFAM, e?. (Both operators are strong-operator convergent sums of
positive operators in 2) Thus

M,AF +FAM, e, and M, AF + M, AM,, (=M, [M, AF +FAM ]e.
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Since M, AM, €, we have that M_ AFe .
i) From (i),

(M AF)*(M,, AF) (=FAM,, AF)e9.
Again,

FAFAF (= ) FAM,,AF)GQL

m=1

(iv) From Lemma 4.2 (v), Fx=x and Fy=y, so that FAFAFx=x and FAFAFy
=().

(v Combining the conclusions of Lemma 4.1 with what we have proved thus far,
we see that for each cyclic projection E in U~ with generating unit vector x and
each unit vector y in (I — E)(J¥), there is a self-adjoint operator FAFAF in U such
that FAFAFx=x and FAFAFy=0. The conditions of Lemma4.l (v), (vi) are
fulfilled, and A=A".

Recall (Definition 2.1) that a C*-algebra 2 with the property that each increasing
net in U that is bounded above has a least upper bound in 21 and for which there
is a separating family of states whose limits on such nets is their values at the
least upper bounds is called a W*-algebra and the special states are called normal
states.

Theorem 4.4. A C*-algebra U is * isomorphic to a von Neumann algebra if and only
f it is @ W*-algebra.

Proof. Suppose ¥ is * isomorphic to a von Neumann algebra. The * isomorphism
transforms increasing bounded nets onto such nets, least upper bounds onto least
upper bounds, and normal states onto normal states. Thus 2 is a W*-algebra in
this case.

Suppose U is a W*-algebra and ¢=) ,.p D7, ), Where {n(a): ac A} is the family
of normal states of . Since {n(a)} is separating for A, ¢ is a * isomorphism.
Write x, for x,,, and suppose {¢(4,): beIB} is a bounded increasing net in ¢()
with strong-operator limit B. Then {4,} is a bounded increasing net in . By
assumption {4,} has a least upper bound A4 in W and {n(a)(4,)} tends to n(a)(A4)
for each a in A. Thus {{¢p(A4,)x,,x,>} tends to {$(A4)x,,x,>. But {{$(4,)x,,x,>}
tends to {Bx,,x,> as well. Thus {(¢(A4)—B)x,,x,>=0 for each a in A. With T
invertible in A, {T*A4,T} has T*AT as least upper bound and ¢(T*A,T) has
o(Ty*B¢p(T) as strong-operator limit. Thus {(¢(4)—B)¢(T)x,,d(T)x,>=0 for
each a in A and each invertible T in A. With S in A, S+n! is an invertible
clement of A for all large positive integers n. Thus

0={(¢(4)— B) $(S) x,, ¢ (S) x>
+2nRe{($(A)—B) $(S) x,, x,> +n*{P(A)—B) x,, x,)
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when n is large. But {(¢(A)—B)x,,x,>=0 and {(¢(4)—B)¢(S)x,,¢(S)x,) is
independent of n. Thus {(¢(A) —B) ¢ (S)x,, $(S)x,> =0 for each S in A. Since x, is
a cyclic vector for the representation =, and ¢ is the direct sum of {m,,:acA},
p(A)=B. Hence ¢(A) satisfies the conditions of Lemma 4.3 and ¢(A)=¢(A)".
Thus 2 is a W*-algebra.

By studying ghe proofs of Lemmas 4.1-4.3, we note that the only use of nets as
opposed to sequences is to establish that arbitrary unions of projections in U lie
in 2. With this observation, we can prove the following strengthened version of
Lemma 4.3 when U satisfies a certain “countability” assumption (always fulfilled
when the underlying Hilbert space is separable). This altered version of Lem-
ma 4.3 can then be used to characterize countably decomposable von Neumann
algebras (Theorem 4.6).

Lemma 4.5. Let A be a C*-algebra acting on a Hilbert space. Suppose that each
hounded increasing sequence in U has its strong-operator limit in A and that each
arthogonal family of non zero projections in W is countable. Then UW=AN".

Proof. As indicated in the preceding comments, it suffices to establish that the
union of an increasing net of projections in A is in A under the present assump-
.ions. We show that the union F of an arbitrary family {F,:aeA} of projections
in 2 lies in . Let {E,: beIB} be a maximal orthogonal family of (non-zero)
projections in A such that E,<F for each b. By assumption B is countable
possibly finite) so that we can denote the family {E,} by {E,,E,,...}. Since
(E,,E,+E,,...} is an increasing sequence of projections in 9, its strong-operator
mit Y E, (=E) is in 2 by assumption. We assert that E=F. Since E<F,
EvF,<F for each a in A. The range projection of E+F, is EvF, and is the
itrong-operator limit of the increasing sequence {[(E+ F,)/2]1'/"}. Thus EVF, is in
Nasis EvVF,—E. If EvF,—E=#0, it can be adjoined to {E,,E,,...} to form a
arger orthogonal family of non-zero projections in 2 contained in F-contradict-
ng the maximality of {E,,E,,...}. Thus Ev F,=E, F,<E for each a in A, and F
=EeW.

Mheorem 4.6. A C*-algebra W is * isomorphic to a countably decomposable von
Veumann algebra R if and only if each bounded increasing sequence in U has a
east upper bound in N, there is a separating family of (normal) states of ¥ whose
imits on such a sequence are their values at the least upper bound, and each
rthogonal family of non-zero projections in W is countable.

>roof. Suppose U is * isomorphic to a countably decomposable von Neumann
ilgebra # acting on a Hilbert space s#. Then bounded increasing sequences in 9
nap onto such sequences in & under the isomorphism. The least upper bound of
he image sequence in # is the image of an clement of A that is the least upper
»ound of the sequence in . Vector states of # composed with the isomorphism
ire normal states of ¥, and the set of such form a separating family for #. An
srthogonal family of non-zero projections in 9 maps onto such a family in £.
since # is countably decomposable, the family of projections is countable.
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The argument of Theorem 44 applies to a C*-algebra U satisfying the given
conditions, with sequences and Lemma 4.5 used in place of nets and Lemma 4.3.
Thus 2 is * isomorphic to a von Neumann algebra #. From the condition on
orthogonal families of projections in U, & is countably decomposable.

We turn next to Sakai’s characterization of a von Neumann algebra as a C*-
algebra dual to some Banach space [16]. We derive it from Theorem 4.4 in a
sequence of results leading to Theorem 4.11.

Lemma 4.7. Let A be a C*-algebra and W, be a Banach space such that U is
(isometrically isomorphic to) the (norm) dual space of U ,,.

(i) Anelement A in W is a self-adjoint element in the ball (N), of radius r in W with
center 0 if and only if |A+inl||> <r*+n? for each integer n.

(i) The set of self-adjoint elements in (N), is weak * closed in .
(iii) The set (W), of positive elements in (N), is weak * closed in .
Proof. (i) Note that for each 4 in U

lA+inI|2=|(A*=inI)(A+in]D)| = A*A+in(4* —A)+n?I|.
Thus if A is a self-adjoint element in (2A),,

lA+inl|?=||A*A+n?]| = 4|2+ n®<r?+n?,
for each integer n.

Suppose A=A, +iAd, with 4, and A, self-adjoint elements in A. If 4,+0, then
some non-zero b lies in spA,. Now b+nesp(A4, +nl), so that

b 42bn+n*=(b+n?<|A,+nl|2<||A+in]|>
But with |n| large and nb positive,

rl4n2<bi4+2bn+n?;
whence rP +n? < ||A+inl|? for such n.

(n) We think of the elements of 2, as linear functionals on 2 by means of their
isometric injection into the norm dual of A (the second dual of A ,). If n is such
an element, we write n(A) for the value of 4 at n. With this notation,

4 =sup{ln(A)]: ne(A,),}.
Thus, for each integer n,

(| (A€ In(A+inD <(r? +n?)"?)
c(Ug)
O A A+ ind] < + 1PV,

and these sets are weak * closed. From (i),
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(-l {AeAU: || A +inl| 2gr? +n2} =(AU,),,

so that (2,), is weak * closed.
(iii) From [8; Lemma 4.2.1], if | Al <r and 4 is self-adjoint, 4 is positive if and
only if |A—rl)|<r. Thus Ae(A*), if and only if Ae(N,), and |[7{A—rD)<r for
each n in (2[,),. That is

A= () {Ae@),:In(A—-rD)<r}.

ne(Ag)

From (ii), each of the sets {Ae(,),: In(4 —rI)|<r} is weak * closed. Thus (U*), is
weak * closed.

Lemma 4.8. Adopt the notation of Lemma 4.7, and let F be the family of subsets of
A whose intersection with every (), is weak * closed, where n is a positive integer,
With & a subset of N, and a a positive number, denote by N(S,a) and NXY,a)
respectively, the subsets

{AeW: [n(A)i<a,ne&}, {AeU:|n(A)<a,ne};

let N (S a) and A(,a) denote the sets WS, a)(A), and AL, a)n(N),, respec-
tively.

() F is the fumily of closed sets of a topology (the “F -topology™) for U.

(i) If O is an F-open subset of U, then for each A in W, A+ 0 is an F -open set,
and the mapping B— A+ B of A onto itself is an F-homeomorphism.

(.iii)~ If {n;} is a sequence of elements of W, tending to O in norm, then A({n,},a)
Is #-open for each positive a.

(iv) If O is an F-open set containing O and n is a positive integer, there is a finite
subset & of W, such that (K1) is contained in OAQL),, and there is a finite
subset T of (W,),,, such that

A, , (FUT 1) ONQ)

n+1-

v Ifo 1;s an F-open set containing 0, there is a sequence (L} of finite sets %
such that &, , <(,),,, for n in {l,a,...} and such that for n in N,

U(AU...UL, 1) SO

(V1) For a given F-open set @ containing 0, there is a sequence {n} in U, tending
to 0 in norm such that Al{n;}, H<o. !

i\(r)u)t .G.weno an F-open set O in W containing O, there is an F-open set (o
ntatning O such that O+ 0o < 0, and addition is F-continuous on .

(vii) The mapping
(@, A)~ad : Cx AN
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is #-continuous, so that F provides N with a locally convex linear topological
structure.

Proof. (i) If {F,} is a subset of %, then
(NE)n @), = (E~(@W,)

and each F,n(A), is weak * closed by definition of & Thus (), FeZ If
{F,,...,E} 1s a finite subset of %, then

(0 F)rten.= 0 (rncn,
and U};,Fjeg{ In addition, @ and U are in & as is each weak * closed subset of
% Thus & is the family of closed subsets for a topology on 9, the Z#-topology.

(1} We show that (4 + @) (), is a (relative) weak * open subset of (2A),. Suppose
C=A+B with B in @ and |[C|| <n (so that Ce(4 + 0)~(A),). Then |B|=|C—A|
<nt+|Al<£n+m, where ||A| <m. Thus BeOn(N),,, and ON(N),,,, is a (rela-
tive) weak * open subset of (), ,,, since @ is F-open. It follows that there is a
weak * open set @, in A such that @ " (N),, =0, N (N),, - Now A+0, is weak *
open, so that (A +0,)(A), is a weak * open subset of (A), containing C(=4
+B). Moreover, (4+0,)n(A),=(A+0O)~(N),. Thus (A+0)N(A), I1s a weak *
open subset of (), for each positive integer n, and A+ 0 is & -open. Since the
mappings B»4+ B and B— — A+ B are inverse to each other and both are #-
open mappings of A onto 2, both mappings are #-homeomorphisms.

(i) We show that AU2({n,},a) is a weak * open subset of (), for each positive
mteger n. In fact, since || ;j1 -0, there is a positive integer n, such that |jn || <a/n
when j>ny. Thus [n,(A)| < |in;|l | Al <a when Ae(), and j>n,. It follows that

Wln,} Q=AL({1,5 ..+, Moo} @)
and AY({n },a) is a weak * open subset of (2),.

(iv) Since @~ (2), is a weak * open subset of (), containing O, there is a :Neak *
open set @, containing O such that @ (), =0, N (A),. Since 0, is weak * open,
there is a finjte subset & of elements of A, such that W 1)=0,, whence

UL 1) 0y (A),=0 (W),

Suppose that for each finite subset 7 of (2 y)1/m>
A, (FUT, DEO AW, 4 ;-

Then for each such
U, (FUT, )N (AN\O)+.
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Let F;, ..., 7, be finite subsets of (2,),;,, and let F; be their union. Then J; is a

finite subset of (2 ,),,, and
k

WL VT, )= WF VT, ).
j=1
Now A, (LU, NN(ANO)+0; and, hence; the total collection of sets
(N, , (FUT, DN(A\0): 7 a finite subset of (A,),,} has the finite intersection
property. Since each set (¥ U7, 1) is weak * closed as is (W\O)N(A),,, (for
A\O is F-closed), and (AN),,, 1s weak * compact, the entire collection of sets has
a non-empty intersection. Let A, be an element of the intersection. For each 5 in

(Wa)y/mr
Ao, | (LU {n}, 1) N (A\O),
so that |(4,)<1. Since A is the dual of A, | Ayl —e=I|n,(4,)| for some 7, in
(,),, where ¢ is a preassigned positive number. If n=n""n,, then ne(¥,),,, and
Ayl “3=|’70(A0)|=n|t7(A0)| <n,
Thus A4,e(N),. By choice of A, and ¥,
Ao (LU {n}, )= (F 1) S0 NN,

But A,eAN\O — a contradiction. Thus there is a finite subset 7 of (U,),, such
that |
A, (LUT, sONQ,, ,.

(v) From (iv), there is a finite subset & of U, such that A, (£,1)c0N(AN), and
a finite subset % of (A,), such that A (A VS, 1)SON(A),. Similarly, there is a
ﬁn'lte subset & of (U,),, such that U (A vSHu A, 1)S O (N),. Continuing in
this way, we construct the sequence, A S5, 95, ..., with the stated properties.

(vi) The sequence {n;} constructed by enumerating the elements of the sequence
constructed in (v), 4, %, %, ..., successively, tends to 0 in norm in ,, and

W ({13} s, DEA(K U .0, DO A(Q),

ij”i“:_] _Iphoesxitive integer n. With A in A({y 1), choose an integer n such that
A€,({n,}, DS O~ (M),
and Ae@. Thus A{n 1 Neo.

(vii) Let {n;} be the sequence constructed in (vi). From (iii), A°({n}, 1/2) is an 4
opcn set ¢, containing 0. If 4 and B are in 0, then in;(A) <172 and l'lj[B)Kl/Z'
whence |7,(4+ B)| <1 and A+BeU°({n},1)c 0. Thus Op+0,c0.

Given A4, B, in A and an Z-o 1

( s . pen neighborhood O, of Ay+B,, —(4,+B0)+0i
is ag_ #-open neighborhood ¢ of 0 from (). As in tlhe pre(::edir(l)g paragraph, find
an #-open neighborhood @, of 0 such that 0o+ 0,= 0. Again from (ii) A%+C,
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and B,+0, are #-open neighborhoods of Ao and B, respectively, and
A0+00+Bo+(90=A0+Bo+(90+00§A0+Bo+0=(9,.
Thus addition is %-continuous on 9I.

(vii)) Given aq in €, A, in U, and an Z-open neighborhood @ of 0, we can find a
sequence {n;} of elements of A, tending to 0 in norm such that U({n },)co
from (vi). Let b be the smallest of 1, 1/2(lagy| + 1), and 1/2(In (Al + 1) (for j in N).
From (iii), A°({n,},b) is an F-open neighborhood Oy of 0. If la—a,|<b and
Aedy+0,, then

In,(ad —ag Ag)l <Infad —aAy)l + |n(ady—ay Ap)
<lal |n;{4 — Aol +|a —aql [n,(4,)
<(lagl+1)b+bin,(A)l<1/2+1/2<]1.

Thus adea, A+ O, and the mapping
(@ AA)—»aAd : CxA-A

is #-continuous. It follows from this and (vii) that % imposes a linear topological
Structure on A. As noted, given the ZF-open neighborhood @ of 0, *)l({nj}. Heo
and A°({n,},1) is a convex F-open neighborhood of 0. Thus F imposes a locally
convex topology on .

Lemma 4.9. With the notation and terminology of Lemma 4.8,

() ¢ is an F-continuous linear functional on N if and only if ¢ is weak * continuous:
(1) a convex subset of W is weak * closed if and only if it lies in F ;

(tii) the sets of self-adjoint and positive elements in U are weak * closed.

Prool. (i) If ¢ is Z-continuous and a positive ¢ is given, there is an F-open
neighborhood V of 0 such that |p(4)|<e when AeV. Now Vﬁ("ll).2 is a (relative)
weak * open subset of (), containing 0. Thus ¢ is weak * continuous at 0 on
(A),, and by translation, ¢ is weak * continuous on (2),. Hence ¢ is .nokm:
continuous on (A), and therefore boundcd_. Thus geA g Aganq, since gfns lwca .
continuous (at 0) on (A),, given a positive ¢, there is a finite set of elemen

Mireesy in A, such that
le(A)<e when Ae(?), and Y In(A)I<L.

J=1
It follows that
G le(l<elal +lel 2. In,(A)
J-

for all 4 in 9. Now A—e( All and A—llell ¥} In,(4)l are semi-norms o; and o,
on A. Define the semi-norm o on the vector space U@ U and the linear function-
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al o, on the subspace {(4, A): AU} of ADA by
a((4, B)=0,(4)+0,(B), 0,((4, A))=¢(A).

Then, from (*),
loo((A, AN =le(A) < 0,(4)+0,(4d)=0c((4, 4)),

for all A4, and 6, extends to a linear functional ¢’ on AP U satisfying
lo’((A, B)| <a((4, B)

for all A and B in U. Let g, and g, be the linear functionals on U defined by
0,:{A)=0'((4,0)), 0,(4)=06'((0, 4)).

Then, for each 4 in 2,

21(A)+0,{4)=0'((4, A)=0,((4, A))=0(A),
!Q I(A)lz fO"((A, 0))[ S O'((A, 0)) =0 1 (A)= € "A“,

le,(A) =10"((0, AP < a((0, A))=a,(A)=]ell 3 ln(A).
i=1

Thus g=¢,+0,, llg, | <&, and g, is weak * continuous on  (in fact, g, is a linear
combination of n,, ..., n,). It follows that g is a norm limit of weak * continuous
linear functionals on U and that g is weak * continuous. (Compare [8; Theorem
1.1.7] for the appropriate formulation of the Hahn-Banach theorem and [8;
Exercises 1.9.2, 19.14, 1.9.15] for the more general setting of the argument
showing that ¢ is weak * continuous from its weak * continuity on (21),.)

If o is weak * continuous on U, then g is #-continuous since the Z-topology on
Yl is stronger than the weak * topology.

(i1) Since each weak * closed set in U 1s F-closed, it suffices to show that each #-
closed convex subset 4 of U is weak * closed. From Lemma 4.8, the #-topology
is a locally convex topology on 2. Thus if 4,6\, there is an F-continuous
linear functional n on A and a real b such that, for each 4 in X,

Ren(A4,)>b=Ren(A),

from [8; Corollary 1.2.12]. Now # is weak * continuous on N from (i). Thus X" is
the intersection of the weak * closed half-spaces containing it, and 4 is weak *
closed.

(iii) From Lemma 4.7, (A ™), is weak * closed for each integer n; that is, 4" is #-
closed. From (ii), A" is weak * closed since A* is convex. Similarly, the set of
self-adjoint elements in 2 is weak * closed.

Lemma 4.10. With the notation and assumptions of Lemma 4.8, let A and U, be
the real-linear spaces of hermitian elements in U, and AU, respectively.

(i) If TeU\U,, there is an n in N, such that Imn(T)+0.
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() If A is a non-zero element of N, there is an n in Wy such that n(A)+0, so that
W, separates .

(i) A, +iUA =, .
(v} If AeUN\U*, there is a state nof Win A, such that n(A)<0.

(v) With A and B in N,, A<B if and only if n(A)<n(B) for each state nofWin
A,.

Proof. (i) From Lemma 4.9 (iii), A, is closed. Since TeM\AU,, there is an element
7 in A, and a real b such that, for each 4 in €A,

Ren'(A)<b< Reyn'(T).
For each integer n, nAe U, so that
nRen'(A)=Ren'(nA)<b.

Hence Rey'(4)=0 for each A in A,. Let n be in'. Then n(A) is real for each 4 in
U, - that is,  is a hermitian functional on A in A,. Since

Ren'{0)=0<b<Ren'(T),
we have Imn(T)=1Im in'(T)> 0.

(i) From (i), there is a hermitian linear functional n on N in A, such that
Imn(i4) %0 since i4¢¥,. But

n(4)=Ren(A)=Imin(A)=Imn(iA)+O0.
It follows that the real linear subspace 91", separates ¥, for if T=A4,+iA4, with
A4y in Ay and T40, then at least one of A,, A, is different from 0 and there is
annin A% such that n(T)=n(4,)+in(4,)+0.
(iti) If , in A, is a norm limit of elements in A%, .then no(A)eR for each A in
¥,; and n,e?”, . Thus A%, and i~ are closed, real-linear subspaces of . I}Ic;\[w
Wy +iW% is a complex-linear subspace of A, that separates the elements of 2.
As U is the dual of A,, A’ +iW% is norm dense in A, from [8; quollary
18.3]. Suppose n, and n, are elements of norm 1 in A%. There is an 4 in (NA),

iplyi i dulus 1, we may
such that 1/2 <]y, (4)|. Multiplying 4 by a suitable scalar of mo \
assume that |’h(a‘i)l='11(A)=’11([A+A*J/2) and, hence, that Ae,. In this case,

T(A) is real and in,(A) is purely imaginary, so that

1/2<|'11(A)“i’12(A)|S oy —inall.
Thus (compare [8; Exercise 1.9.5]), A% +iA”" is norm closed in A,. Hence A,
=, 4904, |
(¥) From Lemma 4.9 (iti), A* is weak * closed. Since AeW\A™, there is an 7, in
¥, and a real b such that for each H in A*,

Reng(d)<b < Reny(H).
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In particular, with 0 for H, we have that b<0. From (iii), n, =1, +in, with , and
1, in A% Thus

n,(A)=Reno(A)<b<Reno(H)=n(H)

since 4 and H are in ,. Hence n,(4)<b<0. If n,(H)<O0 for some H in A", then
nn,(H)=n,(nH)<b for a suitably large positive integral n and nHeU". But this
contradicts the property of n, just established. Thus 0<#,(H) for each H in %".
Since #n,(A)<0, ,4+0 and some positive scalar multiple 5 of n, is a state of % in
A, with the desired properties.

(v) If A<B and n is a state of 2, then n(4)<n(B). On the other hand, if A{B,
then B—AeA\A" and n(B— A4)<0 for some state n of A in A, . For this state
n, n{B)<n(A). Thus, if n(A)<n(B) for each state n of A in W, A<B.

Theorem 4.11. With the notation and assumptions of Lemma 4.7,

(1) each monotone increasing net in N with an upper bound has a least upper bound
in A,

(i1) W is a W*-algebra.

Proof. (1) Let {A4,},. be an increasing net of operators in A that is bounded
above. To show that {4 } has a least upper bound in 2, it will suffice to show
hat the cofinal subnet {4,},,, has a least upper bound in U; we may assume
hat {4,}(N), for some positive r and that {4,} has a first element A4, . Since
he mapping T-T+ A is an order isomorphism of 2 onto itself for each self-
wdjoint A in 2, it will suffice to show that {4,~A4, } has a least upper bound in
2; we may assume that {4 }<=(A™),.

since (™), is weak * compact, {4,} has a cofinal subnet {4} convergent to
iome A in (A*),. With n a state of A in A, {#(4,)} converges to n(4). As {4,
s monotone increasing and 5 is a state of A, {n(A4,)} is monotone increasing to
1(A4). Thus n(A,)<n{A) for each a’ and each state n in AU,. If A—A_¢U* for
iome a in A, then A —A,¢2" when a'>a and there is a state n of U in A, such
hat n(A—-A4,)<0 from Lemma 4.10(iv). But as just noted, n(4,)<n(4) - 2
sontradiction. Thus 4,< A for each a in A; A is an upper bound for {4 }.

suppose B is an upper bound for {4,} in 2. Then n(A,.)<n(B) for each state n of
N and, in particular, for each such » in AU,. But with 5 in A, {n(4,_)} converges
0 n(A). Thus n{A)<n(B) for each state n of A in A,. From Lemma 4.10(v),
4< B; hence A is the least upper bound of {4} in .

i1) From (i), each state of 2 in A, is normal (as described in Definition 2.1). If
4eN* and n(A)=0 for each normal state n of U, then n(~A4)>0 for each such g
ind ~4>0 from Lemma 4.10(v). Hence 4=0; the set of normal states of U is
ieparating. Combining this with the result of (i), we see that the conditions of
Theorem 4.4 are fulfilled. Thus A is a W*-algebra.
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5. The dual-space characterization-Tomiyama’s proof

In [23]), Tomiyama gives an elegant proof of Sakai’s dual-space characterization
by means of universal representation techniques (cf. [8; §10.1]) and his important
results on “projections of norm one” (conditional expectations). We present a
(modified) version of Tomiyama’s proof of Sakai’s characterization along with a
proof of Tomiyama’s theorem that a projection of norm one is a conditional
expectation. (Another account of these arguments substantially identical with
Tomiyama’s but containing a proof of the uniqueness of the predual of a von
Neumann algebra is to be found in [22; §3.3].)

The linear mapping ¢ from one C*-algebra U into another C*-algebra B is said
to be positive when @(H)>0 if He ™. If, in addition, B is a subalgebra of A and

o()=1, @(BAC)=Bo(A4)C

when B, Ce®B and AeU, then ¢ is said to be a conditional expectation from A
onto B. Since each self-adjoint element of A is the difference of two positive
elements of A, ¢ maps self-adjoint elements onto self-adjoint elements and ¢ is
adjoint preserving (“hermitian™). For each 4 in 2 and B in B, 0 <(4 —B)*(4 —B)
so that

0<¢((4 —B)*(A—B))=¢(A* A)— B* ¢(A)—¢(A)* B+ B* B.
Replacing B by ¢(A) in this inequality, we have

¢(A)* p(A) s p(A* A),

which holds for each A4 in 2. Now A* A <||A||?1, so that ¢(A)* p(4)<@(A* A) <
|A]2L. Thus [@(A)| <4 and |l¢| <1. Since (I)=1I,|¢| =1. By assumption,
eB)(=¢(B-1'I})=B-@(I)-I)=B for each B in B. Thus ¢(¢(A))=¢(4), and ¢ is
an idempotent. Hence ¢ is a projection of norm one mapping 2 onto V. In
Theorem 5.3, we shall prove the converse: each projection of norm one mapping
% onto B is a conditional expectation from A onto B. In the lemma that follows,
the study of projections of norm one is reduced to the von Neumann algebra case
with universal representation techniques.

Lemma 5.1. Let B be a C*-subalgebra of the C*-algebra U and let ¢, be an
idempotent bounded linear mapping of U onto B such that ||@,| =1. Suppose U
acting on the Hilbert space 5 is the universal representation of U and WU~ is its
weak-operator closure. Then @ is a positive linear mapping of W onto B such that
polD)=1 and @, extends uniquely to an ultraweakly continuous idempotent linear
mapping @ of W™ onto B~ such that ||| =1 and ¢ is a positive linear mapping.

Proof. With B in B, there is an A in A such that ¢,(4)=B, since ¢, maps A onto
B. As @, is idempotent, @4(B)=¢y(@o(A))=¢o(A)=B. In particular, ¢,(I)=1,
since 1€ B. If ¢ is a state of B, then (g° @,)(I)=¢(I)=1. Since [[go ol <ol lp,]
=1,0°¢, is a state of W by [8; Theorem 4.3.2]. If HeA*, then o(p,(H))>0 for
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each state g of B. Since @,(H)eB, p,(H)eB* by [8; Theorem 4.3.4(iii)]. Thus ¢,
is a positive linear mapping of 2 onto B,

If wis an ultraweakly continuous linear functional on B (as B acts on ), then
wo @, is a bounded linear functional on U, and by [8; Proposition 10.1.1], wog,
is ultraweakly continuous on . Thus ¢, is ultraweakly continuous and extends
uniquely to an ultraweakly continuous linear mapping ¢ of 2~ into B~ such that
lell=l@oll=1. Since B~ <U~, @op is defined, ultraweakly continuous, and
coincides on A with @0 @.(=¢@o=¢|N). The ultraweakly continuous mappings
o and ¢ agree on the ultraweakly dense subset AU of A~ so that they agree on
W, Hence ¢ is an idempotent. Since the unit ball of B is contained in the unit
ball of A and ||¢| =1, ¢ maps the ultraweakly compact unit ball of A~ onto an
ultrawecakly compact (hence closed) subset of B~ that contains (B),. From the
Kaplansky density theorem, (B); =(8B7),. Hence ¢(UA~)=B". By the first para-
graph of this argument, ¢ is a positive linear mapping.

In the next lemma, we make use of the concept of “definite state™ to help us
establish that the mapping ¢ is a conditional expectation. A state g of a C*
algebra 9 is said to be definite on a self-adjoint element A of A when (4%
=p(A)%. In this case, A—g(A)] is in the kernels of g, for o((4—g(A)]))
=0(4%)—20(4)* +0(4)*=0. Thus 0=g(B(4 —o(A)]))=0((4~¢(4)])B), and
o(BA)=p(B)p{A)=0(AB) for each B in 2. We will also make use of the fact

(**) |ETU—-E)+(—E)SE| =max {|ET(I -E)|, |(I - E)SE[}

for all T and § in #(o¢) and each projection E. To see this, let x be a unit vector
in /. Then

|IET(I —E)yx+( ~E)SEx|*=||ET(I —E)x||®>+ |(I —E)SEx|?
<|ET(I —E}*|(I —E)x|*+I(I—E)SE|* | Ex|’
<max {| ET(I ~E)I%, |( —E)SE||*},
since |(I —E)x||?+ | Ex||2=1. On the other hand,
I|ET(I —E)| =sup{llET(I - E)y|l : |yl <1}
=sup {lET(I —E)z|: z=(I—E)y, |yl <1}
=sup{ILET(I - E)+(I - E)SE] z||: ze(I - E)(s¢), |iz| <1}
<I|ET(—-E)+(I—E)SE|.
Similarly, (I =E)SE|| <|ET(I —E)+(I —E)SE||, from which (**) follows.

Lemma 5.2, With thg notation and assumptions of Lemma 5.1, let E be a projection
in B~ and x be a unit vector either in E(H#) or in (I — E)(J¥). Then:

(i) w,op isastate of A~ definite on E;
(i) EQ(EA)E=EQAE)E=EQ(A)E, EQ(EAE)E =E@(A)E,
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and (I —E)@(EA)(I ~ E)=(I —E) o (AE)(I — E) =0 for each A in A~;

(iii) o(EAE)=E@(A)E for each A in A~

(iv) 9(EAUI —E))=(I —E)@(EA(I —E))E+ E@(EA(I —E))(I —E) for each A in A~;
(v} (I-E)o(EA(I —E)E=0;

(vi) o(EA)=E¢@(A) and ¢(AE)=@(A)E for each A in A".

Proof. (i) Since @(I)=¢@ (I})=1, (w,c)(I)=1. From Lemma 5.1, ¢ is a positive
linear mapping of A~ onto B~ so that w _o¢ is a state of A~. As E?=E, the
states o of A~ that are definite on E are those such that o(E)=g(E?)=¢(E)?; that
is, the states definite on E are precisely those that take the value 1 or O at E.
Since EeB~ and ¢ is idempotent with range B~, (w,o ¢)(E)=w (E). When

xe(I—E) (), (w,o)(E)=0, and when xeE()), (w,o@)E)=1. Thus w,c¢ is
definite on E when x is a unit vector in either E(X¥) or (I — E)(Jf).

(i) From (i) and the discussion preceding this lemma, when x is a unit vector in
E(X) or in (I — E)(5¢),
(@, 9)(EA)=(0w, 0 9)(E) (0, 0 9) (A)= 0 (E) (0, > ¢} (A)

for all 4 in A~. Thus, with x a unit vector in E(J¢), {p(EA)x, x> ={p(A4)x, x).
This same equality holds for all x in E(5#), so that EQ(EA)E=E@(A)E.

With x a unit vector in (I —E)(J#), we have {(@(EA)x, x)=0. This same equality
holds for all x in (I —E)(#), so that (I —E) p(EA)(I —E)=0. In the same way, we
have that Eo(AE)E=E@(A)E and (I —E) ¢(AE)(I —E)=0 for all 4 in A~. Thus

EQ(EAE)E=E@(AE)E=E@(A)E.

(in) Since ¢ is a positive linear mapping and —|A|| ESEAE<| Al E, we have
that
— Al E= — | Al @(E)< o(EAE}< | Al @(E)= A| E.
Hence o(EAE)= E@(EAE) E=E@{A)E from (ii).
(iv) From (iii),
¢(EA(I - E))
=E@(EA(I ~E)E+(I —E)p(EA(I —E)) E+ E@(EA(I —E))(I -E)
+(I—-E)p(EA(I—-E)(I1—-E)
=(I-E)p(EA(I —E) E+ E@(EA(I —E))(I -E),
for each A in A~
(v) Suppose (I — E) p(EA(I —E)) E£0. Then for all large positive integers n,

IEQ(EAU —EN(I—E) <|n(I-E)o(EA(I —E))E|,
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so that from the comments preceding this lemma and (iv) and since ¢ is an
idempotent with range 8~ and norm not exceeding 1,

n||(I —E)(EA(I —E)) E|

—max {|n(I —E) @(EA(I —E))E|, |IE@(EA( —E))(I - E})]}

=|E@(EA(I —E))(I —E)+n(I —E) 9(EA(I —E)) E|

= |\E@(EA(I —E)(I —E)+{I —E)p(EA(I—E))E
+(n=1)(I —E)o(EA(I-E))E|

=|@[EA(I —E)+(n—1){I —E)o(EA(I —E)) E]]|

<|EA(I-E)+(n-—-1)(I —E)ep(EA(I -E))E]|

=(n~1) (I -E)p(EA(I —E)) E|,

a contradiction. Thus (I - E) p(EA(I — E)) E=0.

(vi) From (iv) and (v),
P(EAI —E)=E@(EA(I —E)(I -E).
Thus for each 4 in A, from (iti) and this last equality, we have that

¢(A)=@(EAE)+@(EA( —E))+¢((I —E)AE)+ (I -E) A(I - E))
=E@(EAE)E+E@(EA(I —E)(I —E)+(I —E)o((I —E) AE)E

so that +(I—E)o(I—E)A(I-E)(-E

E@(A)=E@(EAE)E + E@(EA(I —E))(I —E)
=@(EAE)+ @(EA(I —E))= @(EA).

Similarly, ¢(AE)= (A} E for each A4 in A-.

Theorem‘ 5.3. With the notation and assumptions of Lemma 5.1, ¢, ¢ are conditional
expectations from U, A~ onto B. B~, respectively.

Proof. From Lemma 5.1, ¢ is a positive linear mapping of U~ onto B~ and o(D
=1. Since ¢, maps A onto B and is the restriction of ¢ to ¥, it will foliow that
@o is a conditional expectation from 9 onto B, when we establish that ¢ 152
conditional expectation from A~ onto B-. For this last, it remains to show that
_Til(]BA)=B<P(A) and @(AB)=¢(A)B for cach A in N~ and B in B~ From [%

corem 52.2(v)], given a positive ¢ there is a (finite) orthogonal familf
{E,,---;E,.} of projections in B- and (real) scalars ay,...,q, such 12
1B—37%_10,E ] <¢/2|| All, where B is a given self-adjoint element in B~ and
Aism A, From Lemma 5.2(vi), we have
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lo(BA)—Bo(A)|
p(BA)—¢ ((j:lajEj) A)||+”<p ((jglajE,)A) —Bcp(A)“
< BA_(.,ilajEj)A

Thus @(BA)=B¢(A) and similarly, ¢(AB)=¢(A)B.

<

<e.

+

(j:,“fEf) (4)—Bo(4)

Theorem 5.4. Suppose the C*-algebra U is (linearly isomorphic and isometric to)
the norm dual of a Banach space N, n is the natural injection of W, into N*, and
Wacting on H is the universal representation of .

) If v is an element of A**, then von=A for a unique A in A (viewed as linear
Junctionals on U ,).

(i) If AeN~ and @(A) is the element of W (obtained in (1)) such that Aon=g@(A),
where A~A is the natural (isometric linear) isomorphism between N~ and A**
(¢/. [8; Proposition 10.1.21]), then ¢ is a conditional expectation from U~ onto .

(1) If X' =¢~2(0), then A is a weak-operator-closed two-sided ideal in N~ and A
=%~ P for some central projection P in A~

(v) A~ (I -P)=A(I —P).
(V) U is *isomorphic to I — P), so that W is a W*-algebra.

Proof. (i) Suppose £e(2,),. Then, since 7 is an isometry, ||(v o 7) (&) <[vll In(E) <
I¥l, and ven is a bounded linear functional on A,. By assumption, U is the
norm dual of A, . Thus there is an A4 in A such that ven=4A, and A is unique.

(i) Let A be an element of A (in 2A~). We show that ¢(A)=A. Since ¢ is a linea_r
mapping of A~ into 9, this will show that ¢ is an idempotent mapping of 2
onto A. With ¢ in A,

A =(A o) (E)=1(E) (A)=A(&).
Thus ¢(A)=A. At the same time, if Be(2~),, then Be(A**), and

loBY(E)l = (B o m}(&)] < In(EN =&l

Thus [|o(B)| < 1. Tt follows that ||¢] <1, and from Theorem 5.3, ¢ is a conditional
€xpectation from A~ onto A.
(i) We note first that o is weak-operator closed. We have that AeX” if and

only if (Aon)(£)=0 for all £ in A,. Now n(£)eUA* and A acting on H# is th;
universal representation of 2, so that there are vectors x($) and y(&) in ¥ suc

that n(&) =, 0| A. Thus AeH if and only if @, x(4)=0 for all £ in A, It
follows that ¢ is weak-operator closed.
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Since ¢ is a conditional expectation from 2~ onto A ¢ (BAC)=Be{A)C for each
A in A~ and B, C in A. Thus, if 4eA, 0=Bp(4) C=¢(BAC), and BACeX. By
weak-operator continuity of left (and then right) multiplication, BACeX when
AeX” and B, Ce~. Hence A is a weak-operator-closed two-sided ideal in A~
From [8; Theorem 6.8.8], there is a central projection P in A~ such that ¥
=9~ P.

(iv) Since ¢ is idempotent, A —@(A)e A" for each 4 in A~. Thus A —¢@(4)eWP
and A—¢@(A)y=[A—¢p(A)]P. It follows that A —P)=¢(A)(—P)eA(l-P)
Hence N~ (I —P)=ANA{ —P).

(v) If AeN and 0%+ A(=¢(A)), then A¢¢ so that A4¢A~P. Thus A+ AP and
A(I — P)#0. Since P commutes with 2, the mapping 4— A(I — P) of A onto A(I -P)
is a *homomorphism and from the foregoing, this mapping is a *isomorphism.
From (iv), A(I —P)=A"(I —P), so that A is *isomorphic to the von Neumann
algebra A (I — P) (acting on (I — P)(s¢)). Hence A is a W*-algebra.
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